Categories, Structures, and the Frege-hilbert Controversy: the Status of Meta-mathematics †

نویسندگان

  • Stewart Shapiro
  • Steve Awodey
چکیده

There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of metamathematics in an algebraic or structuralist approach to mathematics. Can meta-mathematics itself be understood in algebraic or structural terms? Or is it an exception to the slogan that mathematics is the science of structure?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structuralism and Meta-Mathematics

The debate on structuralism in the philosophy of mathematics has brought into focus a question about the status of meta-mathematics. It has been raised by Stewart Shapiro in (Shapiro, 2005), where he compares the ongoing discussion on structuralism in category theory to the Frege-Hilbert controversy on axiomatic systems. Shapiro outlines an answer according to which meta-mathematics is understo...

متن کامل

Frege's New Science

In this paper, we explore Fregean metatheory, what Frege called the New Science. The New Science arises in the context of Frege’s debate with Hilbert over independence proofs in geometry and we begin by considering their dispute. We propose that Frege’s critique rests on his view that language is a set of propositions, each immutably equipped with a truth value (as determined by the thought it ...

متن کامل

Dogmas and the Changing Images of Foundations

I offer a critical review of several different conceptions of the activity of foundational research, from the time of Gauss to the present. These are (1) the traditional image, guiding Gauss, Dedekind, Frege and others, that sees in the search for more adequate basic systems a logical excavation of a priori structures, (2) the program to find sound formal systems for so-called classical mathema...

متن کامل

Fuzzy convergence structures in the framework of L-convex spaces

In this paper,  fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the  resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the  category of $L$-con...

متن کامل

Birkhoff's Theorem from a geometric perspective: A simple example

‎From Hilbert's theorem of zeroes‎, ‎and from Noether's ideal theory‎, ‎Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes‎, ‎similar to their role in the original examples of algebraic geometry‎. ‎I will describe a simple example that illustrates some of the aspects of this relationship‎. The dualization from algebra to geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005